Convergence of Monte Carlo Tree Search in Simultaneous Move Games
نویسندگان
چکیده
We study Monte Carlo tree search (MCTS) in zero-sum extensive-form games with perfect information and simultaneous moves. We present a general template of MCTS algorithms for these games, which can be instantiated by various selection methods. We formally prove that if a selection method is -Hannan consistent in a matrix game and satisfies additional requirements on exploration, then the MCTS algorithm eventually converges to an approximate Nash equilibrium (NE) of the extensive-form game. We empirically evaluate this claim using regret matching and Exp3 as the selection methods on randomly generated games and empirically selected worst case games. We confirm the formal result and show that additional MCTS variants also converge to approximate NE on the evaluated games.
منابع مشابه
Analysis of Hannan Consistent Selection for Monte Carlo Tree Search in Simultaneous Move Games
Monte Carlo Tree Search (MCTS) has recently been successfully used to create strategies for playing imperfect-information games. Despite its popularity, there are no theoretic results that guarantee its convergence to a well-defined solution, such as Nash equilibrium, in these games. We partially fill this gap by analysing MCTS in the class of zero-sum extensive-form games with simultaneous mov...
متن کاملMonte Carlo Tree Search in Simultaneous Move Games with Applications to Goofspiel
Monte Carlo Tree Search (MCTS) has become a widely popular sampled-based search algorithm for two-player games with perfect information. When actions are chosen simultaneously, players may need to mix between their strategies. In this paper, we discuss the adaptation of MCTS to simultaneous move games. We introduce a new algorithm, Online Outcome Sampling (OOS), that approaches a Nash equilibri...
متن کاملMonte Carlo Tree Search in Imperfect-Information Games Doctoral Thesis
Monte Carlo Tree Search (MCTS) is currently the most popular game playing algorithm for perfect-information extensive-form games. Its adaptation led, for example, to human expert level Go playing programs or substantial improvement of solvers for domain-independent automated planning. Inspired by this success, researchers started to adapt this technique also for imperfect-information games. Imp...
متن کاملOnline Monte Carlo Counterfactual Regret Minimization for Search in Imperfect Information Games
Online search in games has been a core interest of artificial intelligence. Search in imperfect information games (e.g., Poker, Bridge, Skat) is particularly challenging due to the complexities introduced by hidden information. In this paper, we present Online Outcome Sampling, an online search variant of Monte Carlo Counterfactual Regret Minimization, which preserves its convergence to Nash eq...
متن کاملMonte-Carlo Tree Reductions for Stochastic Games
Monte-Carlo Tree Search (MCTS) is a powerful paradigm for perfect information games. When considering stochastic games, the tree model that represents the game has to take chance and a huge branching factor into account. As effectiveness of MCTS may decrease in such a setting, tree reductions may be useful. Chance-nodes are a way to deal with random events. Move-groups are another way to deal e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013